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Abstract

A wait-free hierarchy maps object types to levels in Z + U {c_}, and has the following

property: if a type T is at level N, and T' is an arbitrary type, then there is a wait-

free implementation of an object of type T', for N processes, using only registers and

objects of type T. The infinite hierarchy defined by Herlihy is an example of a wait-free

hierarchy. A wait-free hierarchy is robust if it has the following property: if T is at level

N, and S is a finite set of types belonging to levels N - 1 or lower, then there is no
wait-free implementation of an object of type T, for N processes, using any number and

any combination of objects belonging to the types in S. Robustness implies that there

are no clever ways of combining weak shared objects to obtain stronger ones.

Contrary to what many researchers believe [AGTV92, AR92, Hergla], we prove

that Herlihy's hierarchy is not robust. We then define some natural variants of Herlihy's

hierarchy, which are also infinite wait-free hierarchies. With the exception of one, which

is still open, these are not robust either. We conclude with the open question of whether
non-trivial robust wait-free hierarchies exist.

*Research supported by NSF grants CCR-8901780 and CCR-9102231, DARPA/NASA Ames grant NAG-

2-593, grants from the IBM Endicott Programming Laboratory a_ad Siemens Corp.





1 Introduction

A concurrent system consists of asynchronous processes communicating via typed shared

objects such as registers, test&sets, and queues. Since any given system supports only a

limited set of object types in its hardware, other useful types will need to be implemented

in software. Thus, implementing an object of a given type using objects belonging to a

given set of types is a fundamental problem. To be useful, implementations must guarantee

linearizability [HW90]: concurrent accesses on an implemented object must appear to take

effect in some sequential order. One way to ensure linearizability is to implement shared

objects using critical sections [CHP71]. This approach however is not fault-tolerant: the

crash of a process while in the critical sectj0n of an implemented object can permanently

prevent the remaining processes from accessing the object. This lack of fault-tolerance led

to the concept of wait-free implementations [Lam77]. An implementation is wait-free if

every process can complete every operation on the implemented object in a finite number of

its own steps, regardless of the execution speeds of the remaining processes. In particular, if

object O is built using a wait-free implementation, then the crash of some processes cannot

disable the remaining processes from completing their operations on O.

How feasible are wait-free implementations? It is known that registers are too weak to

implement 1 even a 2-process consensus object, i.e., a consensus object that is accessed by

at most two processes [LAA87, CIL87]. Test&sets and 1-bit read-modify-write objects can

implement a 2-process consensus object, but not a 3-process consensus object [LAA87]. 3-

valued read-modify-write, on the other hand, can implement an N-process consensus object,

for all N. These results indicate that object types differ in their ability to support wait-free

synchronization, and that there may be a way of ordering them accor_ngly. This issue was

addressed in a seminal paper by Herlihy [Her88, Her91b]. Following are some important

definitions and results in [Her91b].

.

.

,

For every object type T, an object of type T can be implemented for N processes

using only registers and N-process consensus objects. This is the universality result

of Herlihy.

For every N > 1, (N + 1)-process consensus object cannot be implemented using just

registers and N-process consensus objects.

The consensus number of a shared object O is the maximum number N such that an

N-process consensus object can be implemented using just O and (any number of)

registers. Define a hierarchy of shared objects such that O is at level N if and only if

its consensus number is N. This will be referred to as Herlihy's hierarchy.

As an obvious consequence of the universality result, Herlihy's hierarchy has the fol-

lowing important property: if an object O of type T is at level N, then for every object type
T r, an object of type T r can be implemented for N processes using just registers and objects

of type T. We will call any hierarchy with this property a wait-free hierarchy. Thus, in a

1Hereafter _mplementation" stands for _w_it-free implementation".



wait-freehierarchysuchasHerlihy's,if an object O of type T is at level N, we can immedi-

ately infer that arbitrary wait-free synchronization among N processes is feasible using just

registers and objects of type T. Notice that this definition allows O to be at level N even if

arbitrary wait-free synchronization among more than N processes is feasible using registers

and objects of the type of O. Thus, the level of an object in a wait-free hierarchy does

not reflect the object's full potential; it is only a lower bound on the extent to which the

object can support arbitrary walt-free synchronization. To understand the exact potential

of objects, we define a tight wait-free hierarchy. In such a hierarchy, an object O is at level

N if N is the maximum number of processes for which arbitrary walt-free synchronization

is feasible using registers and objects of the type of O.

What other properties are important in a hierarchy? We argue below that robustness is

one. A hierarchy is robust if for every object O, the following holds: if O is at level N, then

it is impossible to implement O for N processes using any number and any combination of

objects at levels N - 1 or lower. Robustness guarantees that there are no clever ways of

putting weak objects together to implement a strong one. We now present an example to

mustrate the significance of robustness in analyzing the power of shared primitives. Consider

two systems $1 and $2. Suppose that $1 supports only registers and testtsets, and _q2

supports only registers with 3-register assignment. Herlihy showed that arbitrary wait-

free synchronization is impossible for 3 or more processes in Sl, and for 5 or more processes

in 82. What implications do these results have on a third system S3 which supports both

test_sets, and registers with 3-register assignment? In particular, can we conclude,

based on just the above results, that arbitrary walt-free synchronization among 5 processes is

still impossible? We can, provided that Herlihy's hierarchy is robust. Otherwise we cannot.

More generally, if Herlihy's hierarchy is robust, the consensus number of a set of objects,

belonging (possibly) to different types, is just the maximum of the consensus numbers of the

individual objects in the set. Thus, robustness reduces the difficult problem of analyzing the

power of a combination of shared objects to the simpler problem of analyzing the power of

the individual objects. On the other hand, if robust walt-free hierarchies do not exist, then

there is a possibility of combining weak objects to implement strong ones. In particular,

it opens up the possibility of implementing universal objects from non-universal objects!

Thus, from a pragmatic point of view, it would also be interesting to prove that robust
wait-free hierarchies do not exist.

Is Herlihy's hierarchy robust? A study of this question with respect to common object

types, such as register, test&set, fetch&add, queue, compare&s_ap, and sticky-bit,

does not present any evidence to the contrary. In fact, many prominent researchers have

attributed robustness to Herlihy's hierarchy [AGTV92_ AR92, Hergla] 2 We prove that it

_[AGTV92] states "An object has a consensus number /c if/_ is the maximum number of processes for

which the object can be used to solve the consensus problem. Thus objects with higher consensus number

cannot be deterministically implemented by employing objects with lower consensus numbers."

[AR92] states "In fact, Herlihy [HerS8] describes a full hierarchy of atomicity assumptions, and proves

that atoms of a higher class cannot be implemented by those of a lower class, in a wait-f_ee fashion in the

deterministic setting."

[Hergla] states "Elsewhere [17, 15], we have shown that any object X can be assigned a consensus number,

which is the largest number of processes (possibly infinite) that can achieve consensus asynchronously [13] by



is not robust. More specifically, we present an object type Tsp with the property that k
objects of this type, together with registers, can implement a (k + 1)-process consensus

object, but not a (k + 2)-process consensus object. In particular, one Tsp object, with

registers, can implement a 2-process consensus object, but not a 3-process consensus object.

Thus, by definition, a T_p object has a consensus number of 2, and is consequently at

level 2 in Herlihy's hierarchy. However, since multiple Tsp objects, with registers, can
implement a consensus object for arbitrarily large number of processes, it follows from

Herlihy's universality result that for all types T and all N, an object of type T can be

implemented for N processes using just registers and Tap objects. Together with the fact

that a Tsp object is at level 2, this implies that Herlihy's wait-free hierarchy is not robust.

Does there exist a robust wait-free hierarchy? We do not know the answer yet. However,

we define three natural variants of Herlihy's hierarchy, which are also infinite wait-free hier-

archies. We prove that two of these are not robust, s The third hierarchy, whose robustness

is still open, has the following property: if it is not robust, then there is no robust wait-free

hierarchy. We believe that resolving the robustness of this hierarchy is an important open

problem in wait-free synchronization.

This paper is the first to formalize and study robustness. The technical arguments

involved in proving the impossibility result that/_ Tsp objects cannot implement a (k + 2)-

process consensus object are novel. Traditional bivalency arguments are inadequate to prove
such lower bounds.

2 Informal model

A concurrent system consists of processes and shared objects. We write (P1, • •., Pn; 01,..., 0m)

to denote a concurrent system consisting of processes P1,. •., P,_ and shared objects 01,..., O,n.

Besides a unique name, every object has two attributes: a type and a positive integer which

denotes the maximum number of processes which may apply operations on that object.

We say that O is an N-process object if N is the maximum number of processes which

may apply operations on O. The type specifies the behavior of the object when operations

are applied sequentially, without overlap. More precisely, an object type T is a tuple (OP,

RES, G), where OP and RES are sets of operations and responses respectively, and G is a

directed finite or infinite multi-graph in which each edge has a label of the form (op, res)

where op 60P and res 6 RES. We refer to G as the sequential specification of T, and the

vertices of G as the states of T. Intuitively, if there is an edge, labeled (op, res), from state

to state a_, it means that applying the operation op to an object in state _, may change

the state to a_ and return the response res.

applying operations to a shared X. It is impossible to construct a non-blocking implementation of any object
with consensus number n from objects with lower consensus numbers in a system of n or more processes,
although any object with consensus number n is universal (it supports a wait-free implementation of any
other object) in a system of n or fewer processes._

_In proving this, we show the following result which is interesting in its own right. There exist two types
such that (i) Even 2-process consensus cannot be solved using objects of either type, and (ii) N-procees
consensus (for all N) can be solved using the two types of objects together.



A sequence S = (opx, resx), (op2,resz),..., (op, res:) is legal from state _ ofT if there

is a path labeled S in G from the state a. T is deterministic if for every state a of T

and every operation op _ OP, there is at most one edge from a labeled (op, res) (for some
res _ RES). 7"is non-deterministic otherwise. T is total if for every state cr of T and every
operation op _ OP, there is at least one edge from a labeled (op, res) (for some res _ RES).
In this paper, we restrict our attention to total types.

An N-process object O of type T supports the set of procedures Apply(P, op, O),
for all 1 < i < N and op _ OP(T). A process P invokes operation op on object O
by calling Apply(P, op, O), and executes the operation by executing this procedure. The
operation completes when the procedure terminates. The response for an operation is the
value returned by the procedure. We denote the event of P invoking operation op on O by
inv(P, op, 0), and the event of O returning a response v to P by resp(P, v, 0).

The type of an object, by itself, is not sufficient to characterize the behavior of the

object in the presence of concurrent operations. To characterize such behavior, we use the

concept of linearizabiIit!/[HWg0]. Roughly speaking, linearizability requires every opera-

tion execution to appear to take effect instantaneously at some point in time between its

invocation and response. We make it more precise below.

Consider a concurrent system _q -- (/1, P2,..-, Pn;O1,O2,..., Ore). A configuration

of S is a tuph consisting of the states of the processes P1,...,Pn and the states of the

objects O1,..., Ore. An execution E of S is a sequence Co, e0, 6"1, el, C2, e_,..., where Ci's

are configurations of S, Co is the initial configuration, ei's are events, and Ci+l is the

configuration that results when event ei occurs in configuration Ci. The history in E is the

subsequence of events in E. The history of object 0 in E is the subsequence of events of

(P in E. If e and e_ are two events in a history H, we write e <// d if e is before eI in

H. A complete operation in H is a pair of events in H -- an invocation and its matching

response. An incomplete operation in H is an invocation that has no matching response.

H is complete if it has no incomplete operations. If op and op_ are two operations in H, we

write op <H oP_ if the response of op is before the invocation of op _ in H. Two operations

op and op _ are concurrent if neither op <tt op _ nor opr <Hop. H is sequential if it has no

concurrent operations.

Let H be a history of object (P. A linearization of H is a complete sequential history

S with the following properties:

1. S includes every complete operation in H.

2. Let inv(P_, op, O) be an invocation in H with no matching response (and is thus an

incomplete operation). Then, either S does not include this incomplete operation or

S includes a complete operation (inv(Pi, op, O), resp(P/, v, O)) for some v.

Intuitively, this captures the notion that some incomplete operations in H had a

"visible" effect, while the others did not.

3. S includes no operations other than the ones mentioned in 1 or 2.

4. For all operations op, op' in S, if op <Hop' then op <soP _.



Thus, the order of non-overlapping operations in H is preserved in S.

Notice that a given history may have several linearizations. A history H of object 0 is

linearizable with respect to type T, initialized to state a, if H has a linearization which is

legal from state a of T.

Processes are asynchronous: there are no bounds on the relative speeds of processes.

Furthermore, a process may crash: a process may stop at an arbitrary point in an execution

and never take any steps thereafter. A process is correct in an execution E if it does not

crash in E. We assume that every correct process has an infinite number of events in an

infinite execution. An object 0 is wait-free in an execution E if either (i) E is finite, or (ii)

every invocation on O from a process that does not crash in E has a matching response.

Let T be an object type and £: = (7"1,T2,...) be a (possibly infinite) llst of (not

necessarily distinct) object types. Let _ = (al, a2,...) be a list where ai is a state of type

Ti. An implementation ofT, initialized to state a, from (_., Y_).for N processes is a function

27(01, O2,...) such that if O1, 02,. • • are N-process objects of type :/"1,T2,..., initialized to

states al,a2,..., respectively, then O = I(01,02,...) is an N-process object of type T,

initialized to a. Intuitively, Z(01, O2,...) returns a set of procedures Apply(Pi, op, 0), for

1 < i < N and op e OP(T). Apply(Pi, op, 0) specifies how process Pi should "simulate"

the operation op on O in terms of operations on O1,O2, .... We say O is a derived object

of the implementation 2, and 01, 02,..., O,_ are the base objects of O.

We say that 27 is an implementation of T, initialized to state a, from a set S of types

.for N processes if there is a list/: = (T1, T2,...) of types and a list _3 = (a_, a2,...) of states

such that Ti E S, ai is a state of Ti, and 27 is an implementation of T, initialized to a, from

(£, E) for N processes. We say that a type T has an implementation from a set S of types

for N processes if for every state a of T, there is an implementation of T, initialized to a,

from S for N processes.

An implementation is wait-free if it has the following property: if all base objects are

walt-free in an execution E, then the derived object is wait-free in E. Hereafter when we

write "implementation", it stands for "wait-free implementation".

We now define consensus and register -- two object types that appear frequently

in this paper. Type consensus supports two operations: propose(0) and propose(l). The

sequential specification of consensus is in Figure 1. From the specification, it is dear that a

consensus object O has the following properties: (i) If O returns a response v, then there is

an invocation of propose(v) preceding this response, and (ii) O returns the same response

to all operations. These are known as the validity and agreement properties, respectively, of

a consensus object. Sometimes we refer to the consensus problem for processes P1, P2,. • •P,.

This problem is stated as follows. Each process Pi is initially given a binary input vi. Each

correct process Pi must eventually decide a value di such that (i) di E {Vl, v2,..., Vn}, and

(ii) V1 < i,j < n : di = dj. These two conditions are commonly referred to as the validity

and agreement requirements of the consensus problem.

Type register supports the operations {teas} u {writ,(v)lv > 0}, and has the se-

quential specification given in Figure 2.



OP - {propose(v)lv E {0,1}}

Object State:

xe (±,0,1}

propose(v)
if X = ± then

X:=v

return(X)

Figure 1: Sequential specification of consensus

OP = {road} o {wr±te(v)lv > o}
Object State:

x • (0,1,2,...}

read()
return(X)

write(v)
X:=v

return(ack)

Figure 2: Sequential specification of register

3 Hierarchy Preliminaries

A hierarchy of shared types is a function that maps object types to levels in {1,2, 3,...} U

{c¢}. An object type T is at level l in hierarchy h if h(T) = I. A hierarchy is non-trivial

if it has at least two non-empty levels. An object type T is universal for N processes if

for every type T', there is an implementation of T' from {T, register) for N processes. T

is universal (for ov processes) if for all N, T is universal for N processes. A hierarchy h

is a wait-free hierarchy if for all T, h(T) = N implies that T is universal for N processes.

Thus, in a walt-free hierarchy, the level of T is a lower bound on the number of processes

for which T (together with registers) can support arbitrary wait-free synchronization. The

following proposition is immediate from the definition.



Proposition 3.1 If h is a wait-free hierarchy, and h' is a hierarchy such that ¥T : h'(T) <_

h(T), then h' is a wait-free hierarchy.

Proposition 3.2 If h is a wait-free hierarchy, then h(register) = 1. Thus, level 1 of any

wait-free hierarchy is non-empty.

Proof There exist object types (for example, queue) which have no implementation from

register for two or more processes [Her91b]. Thus, register must be at level 1 in any

wait-free hierarchy. O

From Proposition 3.1, it is clear that there can be "slack" in a wait-free hierarchy.

This motivates us to define tightness. A wait-free hierarchy h is tight if for every wait-free

hierarchy h' and every type T, h(T) > h'(T). A wait-free hierarchy is fully-refined if for all

levels k E {1,2, 3,...} U {oo}, there is some type in level k. A wait-free hierarchy h is robust

if for every type T and every finite set S of types, if h(T) = N and VT' E S : h(T') < N,

then there is no implementation of T from S for N processes. The reader should note the

difference between tightness and robustness. The trivial wait-free hierarchy which maps

every object type to level 1 is obviously robust, but not tight. The wait-free hierarchy lx_

(to be defined soon) is tight, but it is not known whether it is robust.

In the remainder of this section, we define some natural wait-free hierarchies, and high-

light some simple properties of these hierarchies. In the following definitions, the subscript

indicates whether the definition allows just 1 or many objects of the argument type. The

superscript r indicates that the definition allows the use of registers.

1. hi(T) = maximum number of processes for which a consensus object can be imple-

mented using just a single object of type T. If there is no such maximum, then

hi(T) =

2. h_(T) = maximum number of processes for which a consensus object can be imple-

mented using just a single object of type T and any number of registers. If there is

no such maximum, then h_(T) = oo.

Notice that this is Herlihy's hierarchy.

3. h,(T) = maximum number of processes for which a consensus object can be imple-

mented using any number of objects of type T. If there is no such maximum, then

h_(T) = c_.

4. h_(T) = maximum number of processes for which a consensus object can be imple-

mented using any number of objects of type T and any number of registers. If there

is no such maximum, then h_(T) = co.

Proposition 3.3 Each Ofhl,h_,hm, h_ is a fully-refined wait-free hierarchy.

Proof Herlihy's universality result trivially implies that these are wait-free hierarchies.

That these are fully-refined follows from the easy observation that Vh E {hl, h_, h., h_} and



OP = {propose(v)]v E {0,1}}

Object State:
X E {_L,O,1}

e {o,1,2,...}

propose(v)
N:=N+I

if X = _L then

X:_-v

if N _< k then

return(X)

else return(l)

Figure 3: Sequential specification of k-cons

k E {1,2,3,...} U{oo}, h(k-cons) = k. (See Figure 3 for the definition of the type k-cons.)
D

Proposition 3.4 h_(T) = N < co if and only if T is universal for N processes, but not

for N + 1 processes, h_(T) = c¢ if and only if T is universal.

Proposition 3.$ If h is a tight wait-free hierarchy, then h = h_. In other words, h_ is the

unique wait-free hierarchy which is tight.

The hierarchy h_ is uniquely important in the study of robust wait-free hierarchies. To

formally state this, we need a definition. Let a = (l,,l_,...) be a finite/infinite sequence

such that 1 = 11 < I2 < 13... and li E {1,2,3,...} U {c_}. We say g is a coarsening of

hierarchy h with respect to a if, for all object types T, we have:

1. If li < h(T) < li+,, then g(T) = li.

2. If li < h(T) and li is the last element of a, then g(T) = li.

3. If h(T) = oo and a is infinite, then g(T) = oo.

Intuitively, levels li ... (li+l - 1) in h are lumped into level li of 9, Causing levels

(li + 1) ... (li+x - 1) to be empty in g. We say g is a coarsening of a hierarchy h if there is

a a of the form 1 = lx < 12 < 13... such that g is a coarsening of h with respect to a. It is

obvious that if h is a wait-free hierarchy, so is every coarsening of h.

Theorem 3.1 If h is a robust wait-free hierarchy, then h is a coarsening of bye.

9



Proof Assume that h is a robust wait-free hierarchy, and is not a coarsening of h_. Let

a = (11, 12,...), where 1 = 11 < 12 < I3... are all the non-empty levels of h. Define g to be
the coarsening of 1_ with respect to a. From our assumption that h is not a coarsening of

1_, it follows that h _ g. Thus, there is a type T such that h(T) _ g(T). Let m = h(T)

and n = g(T). By definition of g, a level k of g is non-empty if and only if level k of h

is non-empty. Together with m # n, this implies that there exist types T' and T", each

different from T, such that g(T') = m and h(T") = n. Since m # n, we are left with two

cases to consider.

i. m<n.

Since g(T) = n, it follows that I_(T) > n. Thus, by Proposition 3.4, T is universal for

n processes. In particular, there is an implementation of T" from {T, rQgister} for

n processes. Since h(T) = m < n = h(T"), h is not robust. This is a contradiction.

2. m>n.

From the above, g(T') = m. Thus, level m of g is not empty. This, together with

m > n, implies that n _< hr(T) < m. This implies, by Proposition 3.4, that T is

not universal for m processes. Since h(T) = m, it follows that h is not a wait-free

hierarchy. This is a contradiction.

This completes the proof of the theorem, o

What can we say about the robustness of hl,h_, and h..? This question is addressed

by the following proposition.

Proposition 3.6 Let h 6 {hl,h_,h.}. If h # 1_, then h is neither tight nor robust.

Proof Proposition 3.5 implies that h is not tight. Theorem 3.1 and Proposition 3.3 imply
that h is not robust. Q

Does one Ofhl,h_, and ha define the same hierarchy as l_? The answer is not easy. For

instance, h_ differs from h_ if and only if there is a type such that multiple objects of this

type (together with registers) can solve consensus among a larger number of processes than

a single object (together with registers) can. Does such a type exist? No common object

type exhibits such a property and, hence, it is a non-trivial question. Similarly, h, differs

from h_ if and only if there is a type such that the use of registers increases the number

of processes for which consensus can be solved using objects of this type. Again, common

object types do not exhibit this property, making it difficult to answer whether such types

exist.

In the rest of the paper, we prove that each of hl,h_, and h= differs from h_. Thus,

none of hi,h_, and ha is robust. In particular, h_, which is the same as Herlihy's wait-free

hierarchy, is not robust. Unfortunately, we do not yet know whether h_ or some coarsening

of it is robust. This is an important open question. We hope that the ideas employed in

this paper would provide useful insights.

10



(L-op, L-first)

(R-op, L-first)
(L-op,L-first) (_ (R-op, R-first) __ ( L-op, R-first)(R-op,R-first)

Figure 4: Object type Tsticlty

4 On the robustness of (Herlihy's hierarchy)

The main result of this section is that h_ is not robust. We prove this result by presenting

an object type Tap with the following property: n Tap objects, together with registers, can
implement a consensus object for n + 1 processes, but not for n + 2 processes. This implies

h_(Tsp) = 2 and l_(Tsp) = oo. Thus, h_ _ h_, and by Proposition 3.6, h_ is not robust.

Consider the object type TsticitT in Figure 4. It supports two operations, L-op and

R-op, and responds with either L-first or R-first. If L-op is applied on a Tsticky object

O, initialized to state S±, O changes state to SL and returns L-first as the response.

Furthermore, O returns L-first to all subsequent operations, reflecting the fact that L-op

was the first operation applied on O. The behavior is symmetric if, instead of L-op, R-op

was the first operation applied on O. In essence, the first operation "sticks" to O and

determines the response for all operations. Notice that Tsticky is similar to the consensus

[Her91b] and sticky-bit [Plo89] object types.

Now consider the type Tap, a variant of Tstlcky, shown in Figure 5. Tap lacks the

symmetry of Tsticky: If R-op is applied to a Tap object O, initialized to S±, R-op sticks to

O as before. However, as soon as R-op is applied for the second time, it "unsticks" and O

starts behaving as though it had been stuck with L-op all along. The following is a trivial

consequence of the definition of Tap.

Lemma 4.1 Let 0 be an object of type Tsp initialized to S±. Let E be an execution in

which R-op is applied at most once on O. Then, the following statements are true in E.

1. If rx and r2 are the responses to any two operations on O, then rl = r2.

2. If O returns a response D-first (D E {L,R}), then an invocation of D-op precedes this

response.

4.1 Implementing consensus from {Tap, register} -- upper bound

In this section, we show how to implement a consensus object for n processes using (n - 1)

TAp objects and 2(n- 1) registers. Our implementation is recursive. Let 2:j denote the
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(L-op, L-first)

(R-op, L-first)
(L-op, L-first) _ ( R-op, R-first)

( R-op, L-first)

( L-op, R-first)

Figure 5: Object type Tsp

On-l: consensusobjectforPI,P_,...,Pn-1, derivedfrom 27n--1

O_: Tap object,initializedto Sj.

L, R: binaryregisters

appay(Pi, propose vi,On) (for1 < i< n- 1)

1. L := Apply(P/, propose vi, {_)n-1 )

2. if Apply(P/, L-op, Oap) = L-first

3. return(L)

4. else return(R)

Apply(Pn, propose vn, On)

R:=vn

if Apply(Pn, R.op, O,p) = L-first

return(L)

elsereturn(R)

Figure 6: Implementing consensus with Tsp and register

implementation of consensus from {Tsp,register} forprocessesPI,P2,...,Pj. The base

case isto derive271,implementation of consensus for the singleprocessPI, and istrivial:

ifOi isa derivedobjectof271,Apply(PI,propose vl,01) simply returnsVl. The recursive

stepof deriving27nfrom 27n-iispresentedin Figure 6.

Lemma 4.2 The implementation In in Figure 6 is a correct implementation of consensus

from {Tnp, register} for processes P1, P2,..., Pn. 27n requires (n - 1) objects of type Tip

and 2(n - 1) registers.

Proof We prove the correctness of 27, by induction. The following is the induction hy-

pothesis: for 1 < j _< n - 1, 27j iS a correct implementation of consensus for processes

P1, P2,..., Pj. The base case, namely, that 271 (described above) is a correct implementa-

tion of consensus for/'1, is obvious. The induction step is proved through several simple

12



claims. Let On be a derived object of 2",. Consider an execution E of the concurrent sys-

tem (/91, P2,..., Pn; On). Assume that each Pi executes Apply(Pi, propose vl, On) at most
once in E. 4 We make the following claims about E. The proof of each claim follows its

statement.

C1. For D E {L, R), the following holds:

1. Every process that writes the register D, writes the same value V in D.

2. If D = L, V E {vl,v2,...,vn-1}. Otherwise, V = v,_.

For D = R, the claim is obvious since only Pn writes R. For D = L, the claim follows

from the agreement and validity properties of ¢)n-1.

C2. Some process completes a write on D before any process receives the response D-first

from O_p.

By Lemma 4.1, some process, say Pk, invokes D-op before any process receives the

response D-first. By the implementation, this process Pk will have completed a write

on the register D before invoking D-op on O_p.

Consider, for arbitrary i,j and i # j, the executions of Apply(Pi, propose vi, On)

and Apply(Pj, propose vj, 0,_) in E. By Lemma 4.1, the responses received by Pi and Pj

from O,n (in Statement 2 of their respective executions) are the same. Let D-first be this

response (for some D E {L, R}). Thus, in Statement 3, both Apply(P/, propose vi, On)

and Apply(Pj, propose vj, On) read and return the value in the register D. From Claims

C2 and C1, it follows that both Apply(Pi, propose vl, On) and Apply(Pj, propose vj, On)

read the same value V in D and that V E {vl,v2,...,v,). Thus, the value returned by

both Apply(P/, propose vl, On) and Apply(Pj, propose vj, On) is the same and is from
{vl, v2,..., vn). It is obvious that the implementation is wait-free. Hence the lemma. [:]

Corollary 4.1 h_(Tsp) = ¢x_.

4.2 Implementing consensus from {Tap, register} -- lower bound

The main technical result of this section states that any solution to n-process wait-free

consensus using Tap objects and registers requires at least n - 1 Tap objects, regardless of
how many registers are available. We prove this result by reducing the "l-resilient consensus

problem for n processes communicating via registers s" to the "wait-free consensus problem

for n processes communicating via registers and (n- 2) T_p objects". The former problem is

impossible to solve [LAA87]. Hence the impossibility of the latter. The reduction is based

on the novel concept of k-trap implementations.

4This is not a limitation for the following reason. After Pi executes ,tpply(Pi, propose v_, On) once, it
can record the return value in its local variable. Thereafter, when Pi needs to apply a propose operation on
O,, it may simply return the value of this local variable as the response. This strategy works because On
is a consensus object, and therefore must return the same response to every invocation.

5A protocol is k.resilient if it meets the problem specitlc_tion despite the crash of k or fewer processes.
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4.2.1 k-trap implementations

An implementation for processes P1,P2,...,tn is a k-trap implementation if every de-

rived object O of the implementation has the following property: in any execution of

(P1, P2,..., Pn; 0), regardless of the relative execution speeds of processes, all but up to k

correct processes will be able to eventually complete their operations on O. In other words,

O appears wait-free to all but up to k correct processes.

We now contrast k-trap implementations with the familiar wait-free, non-blocking,

and critical-section based implementations. Critical-section based implementations and

non-blocking implementations (for n processes) are both (n- 1)-trap implementations. A

critical-section based implementation is (n - 1)-trap because the crash of a single process in

the critical section blocks the remaining (n- 1) processes. A non-blocking implementation

is (n - 1)-trap because repeated execution of operations by one process could cause the

remaining processes to block. The converse does not hold: an (n - 1)-trap implementation

does not guarantee the properties of either a critical-section based implementation or a non-

blocking implementation. To see this, suppose that exactly one process, say P, attempts

to access the object, and suppose that P is correct. In the case of a critical-section based

implementation or a non-blocking implementation, P is guarnnteed to complete its operation

on the object. But in a k-trap implementation (k > 1), P may block. Finally, note that a

0-trap implementation is the same as a wait-free implementation.

The following lemma establishes the utility of k-trap implementations in proving lower-
bounds.

Lemma 4.3 Let T be any object type such that for every state _ of T, there is a 1-trap

implementation Z_ of T, initialized to _r, from register for n processes. Then, any wait-

free implementation of consensus from {T, register} for n processes requires at least n - 1

objects of type T (regardless of how many registers it uses).

Proof Suppose that the lemma is false, and there is a wa_t-free implementation ,7 of

consensus from {T, register) for n processes such that .7 requires only n-2 objects of type

T, initialized to states or1,_r2,..., or,,_2 of T, and m registers (for some m > 0). Consider the

protocol P in Figure 7. Clearly, processes communicate exclusively via registers in protocol

P. We argue below that P solves the consensus problem for processes P1, P2,..., Pn even

if (at most) one of the processes may crash. By the impossibility result in [LAA87], such a

protocol does not exist. Hence the lemma.

We claim that at most (n - 2) processes block on O. This follows from the following
facts:

1. n - 2 base objects of 0 are 1-trap. So at most one process blocks on each of these.

2. No process blocks on the remaining base objects of O, the registers R1, R_,...,/t,_.

3. 0 is derived from a walt-free implementation.
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1. For 1 < i < n - 2, use I_ to implement an object Oi of type T initialized to state oi.

2. Use J to implement a consensus object O from O1,O2,...,On-2 and registers

RI, R_,..., Rm.

3. Let D be a 3-vaiued register initialized to ±.

4. For 1 < i < n, let vi be the binary input vaiue of process Pi for consensus. Process Pi

executes the following procedure. We require that statements 1 and 2 are executed in
a fair manner.

cobegin
1.

2.

coend

D := Apply(/_, propose vi, O)

repeat until (D _ _k).
decide D

Figure 7: 1-resilient consensus protocol P for n processes

Therefore,ifat most one of PI,P2,...,P,_crashes,there isstillone process,callit

Pk, that neithercrashesnor blockson O. This processPk eventuallywritesthe response,

callitV, returned by Apply(Pk, propose vk, O) in registerD. Since O satisfiesvalidity,

we have V E (vl,v2,...,vn). Since O satisfiesagreement, no processever writesa value

differentfrom V in registerD. Since Statements 1 and 2 are executed in a fairmanner,

every non-crashingprocesseventuallyreads V and decidesV. In otherwords, _Psolvesthe

consensus problem for/>1, P2,.--, P,_ even if at most a single process may crash, o

4.2.2 1-trap implementation of Tsp

RecallthatTsp has threestates-S±, SL, and SR. We now presenta l-trapimplementation

of Tsp initializedto S±, and 0-trapimplementations of Tsp initializedto SL or SR. These

implementations use only registersas base objects. Thus, by Lemma 4.3,we have the

desiredlower bound.

A 1-trap implementation of Tsp, initialized to Sj., from register for n processes is

presented in Figure 8. This implementation is subtle. We present below an informal and

intuitive argument of its correctness before proceeding to give the formaJ proof. Consider

O, a Tsp object derived from this implementation. Let H be a history of O, and let first-op

denote the first operation to complete in H. There are two cases. Case (1) corresponds

to first-op being an L-op operation. Consider the linearization S which includes only the

complete operations in H and sequences them in the order of their completion times. Thus,
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R[1...n]: binary (1-writer, n-reader) registers initialized to 0

Apply(p/,L-op,O)

return(L-first)

Apply(P/, R-op, O)

1. if (Vk: R[k]= 0) then

2. R[i] := 1
3. repeat until (3j < i: RLj]= 1)

4. return(L-first)

Figure 8: 1-trap implementation of Tsp, initialized to S±, from rogister

first-op, which is an L-op operation, becomes the the first operation in S. Furthermore,

the response of every operation in S is L-frst (this is obvious from the implementation).

From the sequential specification of Tsp in Figure 5, it is obvious that 5" is legal from

the state Sa. of Tsp. Now consider Case (2), which corresponds to first-op being an R-op

operation. The key observation is that iffirst-op, which is an R-op operation, completed in

H, then by our implementation, there must be another R-op operation, call it blocked-op,

from a different process which is concurrent with first-op and is blocked. Let us pretend

that, although incomplete, blocked-op has indeed taken effect in H, and has R-frst for its

response. Consider the linearization S which sequences blocked-op first, first-op second, and

the remaining complete operations in H in the order of their completion times. (blocked-

o19 can be linearized before first-op since these two operations are concurrent.) Thus the

first operation in the linearization _q is a R-op operation with R-first as the associated

response. The second operation in the linearization is also an R-op operation, and has

L-first as the associated response. The remaining operations in the linearization have L-

first as their response. From the sequential specification of Tap in Figure 5, it is obvious

that this linearization S is legal from the state S± of Tsp. Hence the correctness of our

implementation. We formalize the above arguments and present a more rigorous proof of

correctness below. The proof is based on a series of claims.

Claim 4.1 The implementation is 1-trap.

Proof Clearly, a correct process P/blocks if and only if the repeat.., until loop (Statement

3 of Apply(p/, R-op, O)) never terminates. By Statement 2, such a P/will have written the

value 1 into R[i].

Suppose that the claim is false, and two correct processes P� and Pj (assume j < i) block

on O. It follows that R_i] = R_j] = 1 and each of P/' and Pi is caught in the repeat.., until

loop that never terminates. Process P� eventually notices that R[j] = 1, and since j < i, P/

quits the repeat.., until loop, and returns L-first. This contradicts the assumption that Pi
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blockson O. D

The next claim asserts that if a process P_ successfully completes an R-op operation

on O, then a different process Pj is already blocked, unable to complete its R-op operation
on O.

Claim 4.2 Let E be an execution of (Px,P2,...,Pn; O), and H be the corresponding his-

tory. Suppose that H contains the two events -- an invocation e_'_' = inv(Pi, R-op, O)

_res = resp(Pi, L-first, O). Then H contains an invocationand its matchin 9 response e i

einv = inv(Pj, R-op, {9) such thatJ

inv _es and1. ej <H ei ,

_. e inv has no matching response in H.-j

Proof The proof of this claim is based on the following observations:

O1.

02.

03.

The predicate 3k : R[k]= 1 is stable: that is, if it holds in some configuration of an

execution, it holds in every subsequent configuration of that execution. Purthermore,

this predicate must hold before a response can occur to any invocation of R-op.

The first part of this observation follows from the fact that once a 1 is written to a

register, it is never changed. The second part is obvious from Statements 1 and 2 of

the implementation.

In //, let k be the smallest integer such that Pk has an invocation eik'_v = inv(Pk,

R-op, O) and Pk writes a 1 in Elk]. Then e_n_ has no matching response in H.

To see this, notice that after writing a 1 in R[k], Pk enters the repeat...until loop.

This loop never terminates in H because of our premise that k is the sma_est integer

such that Pk writes a 1 in R[k]. Thus Pk does not return from Apply(Pk, R-op, 19).

In H, if a process Pk writes 1 in R[k] after an invocation e_n_ - inv(Pj,, R-op, 19) and

before its matching response, then e_nv <1t e__.

Suppose not. Then e reJ e_n_. e_n'_,-i <11 After the invocation when Pk executes State-

ment 1 of the procedure Apply(Pk, R-op, 19), the guard Vk : R[k]= 0 evaluates to

false (by O1). Thus Pk returns the response L-first without writing into R[k]. This

contradicts the premise that Pk writes 1 into R[k] after the invocation e_n_ and before

its response.

To complete the proof of the claim, let ,.q be the set of processes that invoke R-op on O

prea byand write 1 into a register in the execution E. Since H contains a response event -i ,

O1, S is non-empty. Let j be the smallest integer such that P_ E S. By 02, Pj's invocation
,n_, er_m Hence the claim.e inv of R-op on 19 has no matching response in H. By 03, ej <I-I -s •-j

[3

Claim 4.3 Let E be an execution of(P1,...,P,,;19), and H be the history of 19 in E. H

is linearizable with respect to Tap, initialized to state S.L.
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Proof If H has no response events, then the claim is trivial: the empty sequence is a

linearization of H and is legal from state S± of Tsp. Assume, therefore, that H has one or

more response events. Let e_es = resp(Pi, L-first, O) be the earliest response in H. Let
_s There are two cases:inv be the invocation whose matching response is e i .ei

i,,, = inv(Pi, L-op, O)Case 1. e i

This corresponds to the case in which the first operation to complete is an L-op

operation from process Pi. Define a sequential history S as follows:

1. S includes all complete operations in H.

2. If two operations op and op' are in S, op <s op' if and only if response of op

precedes the response of op' in H.

It is obvious that (i) S is a linearization of H, and (ii) S is legal from the state S± of

Tsp.

i,_,, inv(Pi, R-op, O)Case 2. e i =

This corresponds to the case in which the first operation to complete is an R-op from

in,, = inv(Pj, R-op, 0) such thatprocess Pi. By Claim 4.2, there is art invocation ej

ejin,, <H ei_" and ejin" has no matching response in H. Define a sequential history S
as follows:

1. S includes all complete operations in H, and the operation _ejtin,,,_j,,res_j, where

e__" = resp( ej, R-first, 0).

2. The operation i,,, res(ej , ej ) precedes all other operations in S.

3. Hop and op_ are operations in S different from in,, pr_o_(ej , _j j, op <sop' if and only

if the response of op precedes the response of op' in H.

It is easy to verify that (i) S is a linearization of H, and (ii) S is legal from the state

S± of Tsp.

Hence the claim. []

Lemma 4.4 Figure 8 presents a 1-trap implementation of Tap, initialized to S±, from

register for processes P1, P2, . . . , Pn.

Proof Follows from Claims 4.1 and 4.3. []

Lemma 4.5 Figure 9 presents a O-trap (wait-free) implementation of Tsp, initialized to Sit,

from register for processes P1, P2, . . . , P,.

Proof Let E be an execution of (P1, P2,..., Pn; O), and let Hit and Ho be the histories of

objects R and O, respectively, in E. Let _R be a linearization of Hit, which is legal from

the state 0 of register. For every operation op E Eit, define f(op) as follows:
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Apply(Pi, L-op, O)

if (R = O) then

return(R-first)

else return(L-first)

R: binary register initialized to 0

Apply(Pi, R-op, O)

R:=I

return(L-first)

Figure 9: 0-trap implementation of Tsp, initialized to SR, from register

if op = (inv(Pi, read, R), resp(Pi, O,R)) then
f(op) = (inv(P,., L-op, 0), resp(P,.,R-first, 0))

else if op = (inv(Pi, read, R), resp(Pi, 1, R)) then
f(op) = (inv(P_,L-op, 0), resp(t'_,L-first, 0))

else if op= (inv(Pi, write 1, R), resp(Pi, aek, R)) then
f(op) = (inv(ei, R-op, 0), resp(Pi, L-first, 0))

Define a sequential history Zo as follows:

1. For every operation op E ER, include f(op) in _o.

2. If op, op' E _R and op <ra op', then f(op) <F,o f(op').

It is easy to verify that Zo is a linearization of Ho, and is legal from the state SR of Tap.
O

Lemma 4.6 Figure 10 presents a O-trap (wait-free) implementation of Tsp, initialized to

SL, from register for processes Pa, P2,..., P,.

Proof Obvious. D

Lemma 4.7 Any wait-free implementation of consensus from {Tnp, register} for n pro-

cesses requires at least n - 1 objects of type TBp.

Proof Follows from Lemma 4.3, and Claims 4.4, 4.5, and 4.6. []

Corollary 4.2 h_(Tsp) - 2.

Proof By Lemma 4.2,h_(Tsp)> 2. By Lemma 4.7,h_(Tap)< 2. Hence the result, o
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Apply(Pi, L-op, O)

return(L-first)

Apply(P_, R-op, O)

return(L-first)

Figure 10: 0-trap implementation of Tsp, initialized to SL

Theorem 4.1 h_ is neither tight nor robust.

Proof Follows from Proposition 3.6 and Corollaries 4.1 and 4.2. cl

Theorem 4.2 hi is neither tight nor robust.

Proof From the definitions of hi and h_, it is obvious that, for all types T, hi(T) _< h_(T).

In particular, ha(Tap) < h_(Tsp) = 2 < c¢ = h_(Tjp). Thus, by Proposition 3.6, hi is

neither tight nor robust. [:2

5 On the robustness of hm

The main result of this section is that ha is not robust. We prove this result by presenting

an infinite family Tnkd, k E (2, 3, 4,...} U {c¢}, of object types with the following properties:

1. There is an implementation of consensus from {Tknd,register} for k processes, but

not for k + 1 processes.

2. There is no implementation of consensus from Tkndfor two processes.

Property (1) implies that h_(Tnkd) = k. Property (2) implies that h=(Tnkd) = 1. Thus,

]am_ h_, and by Proposition 3.6, h= is not robust, s This result is significant in the following

sense. Registers by themselves axe too weak to solve even 2-process consensus. So are T_

objects. Combining these two types, however, lets us solve consensus among any number

of processes!

The object type Tkndis specified in Figure 11. In this specification, choose(S) is assumed
to choose an element from set S non-deterministically and return it. Notice that upset and

aheaa_i] axe stable: once true, they remain true. Similarly, once decision E {0, 1}, it does

not change.

SA single member of the Tnkd family is sufficient to establish that ha is not robust. The existence of an
entire family shows that there is not even a coarsening of ha which is non-trivial and robust.
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$1. Tkndsupports operations in {op(i)[i = {0, 1}} U {give-decision(i,b)[i E {0, 1},b E

{true, false}).

$2. The response for op(O) or op(1) is always ack. The response for give-decision(-,-)
is either 0 or 1.

$3. The state of Tnkdis represented by the variables no, nl, nza : integer; decision E

{3-,0,1}; ahead[O..1], upset : boolean. Informally, no, nl,nud count the number of

executions of op(0), op(1), and give-decision, respectively. The variable ahead[i]

is set to true if ni > 0 and n_, = 0 when give-decision(i,-) is executed. The

variable upset is set to true if one of the following happens: (i) op(1) is executed

more than once (op(0) may be executed any number of times without upsetting a Takd

object); (il) give-decision is executed more than k times; (iii) give-decision(i, -)

is executed with no prior execution of op(i); (iv) give-decision(i, true) is executed

with no prior execution of op(_); (v) give-decision(i, false) is executed and ahead

_] = true. If upset, a T_d object returns 0 or 1 non-deterministicMly to an invocation

of give-decision. If not upset, it sets decision irrevocably and non-deterministically

(if not already set) to 0 or 1 such that ndeciai_ > O, and returns decision. See $5

below for a formal sequential specification of T_d.

$4. The state of Tnkdcorresponding to (no = nl = nod = O; decision = 3.; ahead[O..1] =

upset = false) is known as the fresh state. The states of Tnkdare only those that are

reachable from the fresh state by the following specification.

$5. The sequentiaJ specification of TnkdiS aS follows"

op(i) /* i E{0,1) */

ni := ni + 1

if nl > 1 then upset := true

return(ack)

give-decision(i, other-is-ahead) /* i E {0, 1}, other-is-ahead: boolean */

ned := nyd q- 1

if (ni > 0 ^ n z = 0) then ahead[i] := true

if (ngd > k) V (n_ = O) V (ahead[_ ^ -other-is-ahead) V (n z = 0 ^ other-is-ahead) then
upset := true

if upset then

return( choose({O, 1} ))
else if decision = 3. then

decision := choose({jln_ > 0))
return(decision)

Figure 11: Object type 'rknd
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5.1 consensus from {Tnkd, register} -- an implementation

In this section, we show, for k E {2, 3,...} U {c_}, how to implement a consensus object for

k processes using only Tnkdobjects and registers. Our implementation is recursive. Let 7:_

denote the implementation of consensus from {Tknd,register} for processes P1, P2,. •., P,.

The base case is to derive I0k, implementation of consensus for an empty set of processes,
and is vacuous. The recursive step of deriving 27_ from 27__1 is presented in Figure 12.

The implementation 2:_ works as follows. Processes P1 ...P,, split into two groups, Go

and G1. Group Go has P1...P,-1, and group G1 has just P,. Processes P1-..P,-1 do

consensus among themselves (recursively) and announce the outcome in R[0]. Process P,

announces its input value in R[1]. The rest of the protocol resolves which of the two groups

is the winner. If Go wins, every process decides the value in R[0]. Similarly, if G1 wins,

every process decides the value in R[1]. The object O,d is used to determine the winner

of the two groups. Processes P1 ... P,-1 perform the operation op(0) on O,d. Then they

set the register R'[0] to inform process Pn that op(0) has been executed on O,_d. Process

P,_, on the other hand, performs op(1) on O,,d, and then sets R'[1] to inform processes in

Go that op(1) has been executed. Processes then perform the give-decision operation.
The return value determines the winning group. For this strategy to work correctly, the

arguments of the give-decision operation must be such that the O,,d object does not get

upset. We urge the reader to understand how the registers R'[0..1] are used to ensure that

O,,d does not get upset. Finally, if Ond returns v, a process assumes that the group G_ won

and decides the value in R[v].

Lemma 5.1 For 1 < n < k, the implementation l'_ in Figure 12 is a correct implementa-

tion of consensus from {Tnkd, register}/or processes P1, P2,..., P,.

Proof Sketch By induction. Assume that 77__1 is correct. Let On be a derived object

of the implementation in Figure 12. Consider an execution E of the concurrent system

(P1, P2,..., Pn; 0,_) in which every process Pi has invoked Apply(Pi,propose vi, (9,) exactly

once, and executed it to completion. The key daJm is that O,d is not upset in g. This

follows from the following simple observations:

1. op(1) is executed only once.

2. For v E {0, 1}, op(v) is executed before executing give-decision(v,-).

3. give-decision is executed no more than n times. Since n < k, give-decision is
executed no more than k times.

4. Suppose op(v) is ahead of op(V). That is, the operations op(v) and then give-decision(v, -)

are completed before the first invocation of op(_). Then, the use of the registers

R'[0..1] in the implementation _-1 guarantees that when a process invokes

give-decision(t, other-ahead), the second parameter, namely, other-ahead, is true.
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base objects of the implementation I_

0,-I: consensusobjectfor PI,P2,...,P,-I, derivedfrom _nk_l

O,d: Tnkdobject,initializedto the freshstate

R[0..I]:binaryregisters

R'[0..I]:boolean registers,initializedto false

local variables of process Pi

eli, winneri E {0, 1}

other-aheadi: boolean

Apply(Pi, propose vi, 0.) (for 1 < i < n - 1) Apply(P., propose v., On)

I. di := Apply(Pi,proposevi,O,-x)

2. Rio] :=
3. AppXy(Pi, op(0),Ond)

4. Rl[0] := true

5. other-aheadi := RI[1]

6. winneri :=

Apply(P,., give-declsion(0, other-aheadi ), O,d)

7. return(R[winneri])

dn := vn

R[I] := d,

tpply(P., op(1),O,d)

R'[I]:= true

other-ahead. := R'[0]

winnern :--

Apply(P., giw-decision(1, other-ahead.), 0 ._ I

return(R[winner.])

Figure 12: Implementing consensus from {Tnkd,register)
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. Suppose no process completes the operation op(v) before some process invokes

give-decision(F, other-ahead). Then the use of the registers R'[0..1] in the imple-

mentation Ink_l guarantees that the second parameter of give-decision, namely,

other-ahead, is false.

Since

1.

.

O_d is not upset in E, by the specification of Tknd,we have:

Every give-decision operation on Ond returns the same binary response. Let

winner E {0, 1} denote this response.

Some process Pj invokes op(winner) before Ond returns winner for the first time to

a give-decision operation.

From the implementation, it is clear that Pj writes the value dj in R[winner] before invoking

op(winner). Furthermore, once a value is written by a process into a register RIO] or R[1],

the value of that register never subsequently changes. For RIO], this follows from the

agreement property of Onk_l, and for RIll, this follows from the fact that only Pn writes

R[1] and writes it only once.

The above implies that for all i, Apply(Pi, propose vi, On) returns dj. Thus, 04 satisfies

agreement. If j = n, then dj = dn = Vn, and thus, On satisfies validity. If j _ n, by the

validity of On-l, dj E {vl,v2,...,vn-1}. Thus, 0,_ satisfies validity. It is obvious that the

implementation is wait-free. This concludes the proof of correctness of 2_. o

5.2 consensus from {Tnkd, register} -- an impossibility result

In this section, we prove that Tnkdobjects and registers do not suffice to implement a

consensus object for k + 1 processes. T_s impossibility result follows from a straight

forward bivalency argument. The intuition behind why this impossibility result holds for

k + 1 processes, but not for k processes, is as follows. As we have seen, a Tnkd object supports

two kinds of operations: op and give-decision. The operation op(i) does not return any

useful information to the invoking process. This is due to the fact that the response of op(i)

is always ack. The operation give-decision does return useful information, but only to

the first k invocations of the operation. Thereafter, its response is non-deterministic and

hence is not helpful. Thus, k processes may gain useful information from a Tnkdobject, but

k + 1 processes cannot. We now proceed to prove the impossibility result.

Let T_ be a deterministic object type whose specification is defined by replacing every

expression of the form choose(S) in Figure 11 by rain(S), r Thus, T_ is a deterministic

restriction of Tknd. Hence, if a history of an object is linearizable with respect to T_, then it

is afortiori linearizable with respect to T_a. We prove below that T_ objects and registers

do not suffice to implement a consensus object for k + 1 processes. This trivially implies

that T_d objects and registers cannot implement a consensus object for k + 1 processes.

7rain(S) is the minimum element in set $.
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As mentioned,theproofusesa simplebivalencyargument.Sincebivalency arguments

are standard, our definitions and the proof are informal. A configuration C of a concurrent

system is v-valent (for v E {0, 1)) if there is no execution from C in which _ is decided

by some process. In other words, once the system is in configuration C, no matter how

processes are scheduled, no process decides _. A configuration is monovalent if it is either

0-valent or 1-valent. A configuration is bivalent if it is not monovalent. If E is a finite

execution of a system S started in configuration C, E(C) denotes the configuration of S at

the end of the execution E. For the purposes of this section, a step of a process P consists

of invoking an operation on an object O, receiving the response from O, and making an

appropriate change in its state.

Lemma 5.2 For all k E {2, 3,...}, there is no implementation o/consensus from {Tdk, register}

for k + 1 processes.

Proof Assume 77(O1, O2,..., On)is an implementation of consensus from {T_,reginter}

for processes P1, P2,..., Pk+l. Let O = 77(01, O_,..., On). Consider the concurrent system

S = (P1, P2,..., Pk+l; O). Let Co be the initial configuration orS. Assume that in Co, each

process P/is about to execute Apply(Pi, propose vi, 0). Furthermore, assume that there are

i,m(l<l,m<k+l) suchthatvt=0andvm= 1.

When Pt runs by itself from Co, the validity and wait-freedom of O require that PI

decide vt = 0. Similarly, when P,, runs by itself from Co, it decides v,, = 0. Thus, Co is

bivalent. Let E be an execution from Co such that (1) Cerit = E(Co) is bivalent, and (2)

For all Pi, if Pi takes a step from Cerit, the resulting configuration is monovalent. Let Sv

be the set of processes whose step from Ccrit results in a v-valent configuration. Since Ccrit

is bivalent, neither So nor $1 is empty. Furthermore, So Cl$1 = 0 and [So U $11 = k + 1 > 3

(since k > 2). Without loss of generality, assume that ISol _>2 and I&l -> 1. ha particular,

let So = {P_I,P_2,...,P_r } and $1 = {V_,V_,.. 1., P_ ), where r > 2 and s > 1.

By a standard argument, the enabled step of every process in configuration C_it must

be on the same base object O of O. Furthermore, again by a standard argument, O is not a

register. Thus, the enabled step of every process in configuration C_rit is on O, an object of

type T_. Let s o and s_ denote the enabled steps of/_2 and P_, respectively, in configuration

C_it. Consider the following scenarios So and $1, each starting from the configuration Cv, it.

• In Scenario So,/_2 takes the step s °. Then, P_ takes a step. Let Do be the resulting

configuration. Clearly Do is a 0-valent configuration.

• In Scenario $1, P_ takes the step s_. Then,/_2 takes a step. Let D1 be the resulting

configuration. Clearly D1 is a 1-valent configuration.

ProcessesP_2 and P_ have to distinguishScenarioSo from Scenario Sl, since they must

decide0 in (everyextensionof)S0, and decideI in (everyextensionof) Sl. Observe that

unlessthe operationappliedby P_2(resp. P_) in step so (resp.s_)is a give-decision

operation,itmust eventuallyapply a give-decision operationon O in orderto distinguish

S0 from Sl. Thus, we extend ScenariosSo and Sl as follows:
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• If the operation applied by po on O in step so is not a give-decision operation,

run P_2 (in both scenarios) exactly until P_2 completes a step in which it applies a

give-decision operation on O.

• If the operation applied by P_ on O in step sl is not a give-decision operation,

run P_ (in both scenarios) exactly until P_ completes a step in which it applies a

give-decision operation on O.

h process P E {el,...,Pk+l}- {el°, _2, P1} has to distinguish Scenario So from Scenario

S1, since P must decide 0 in (every extension of) S0, and decide I in (every extension of) S1.

Observe, however, that P cannot distinguish S0 from S1 until it applies a give-decision

operation on O. Thus, we extend Scenarios So and $1 as follows:

• For each P E {P1,...,Pk+I} - {P_l ,P_2,P_}, run P (in both scenarios) exactly until

P completes a step in which it applies a give-decision operation on O.

We make the following observations: (1) The process P_I is in the same state in Scenarios

So and S1. (2) Every base object except O is in the same state in So and 51. (3) In both S0

and S1, a give-decision operation is applied on O at least k times (once by each process

in {P1,..., Pk+l} - {P_l }, in the execution from Ccrit). The second observation, together

with the specification of T_, implies that every subsequent give-decision operation on O
returns 0 in either scenario. Extend Scenarios So and S1 by letting P_I run by itself. By the

above observations, P_I cannot distinguish whether it is running in S0 or S1. Yet it must

decide 0 in So and 1 in $1. This is impossible. Hence the lemma. []

Corollary 5.1 For all k E {2,3,...} U {oo}, h_(Tknd) = k.

Proof Follows from Lemmas 5.1 and 5.2. []

5.3 Ix. is not robust

In this section, we prove that hm(Tknd) = 1. Thus, h_ is different from h_ and, hence, is not

robust. We begin with a simple technical lemma that will be useful in proving lh(Tknd) = 1.

The lemma states that it is trivial to implement Tknd,initialized to any state different from

the fresh state. In the following, let _r[v] denote the value of state variable v in state _.

Lemma 5.3 Let _r be any state of Tknddifferent from the .fresh state. Fig,re 13 is an

implementation of Tnkd,initialized to a, from @.s

Proof If cr is different from the fresh state, then it is easy to verify that

(a[decision] E {0, 1}) V (_r[n0] > 0) V (a[nl] > 0) V a[upset]. From this and the specification

of Tnkd, the correctness of the implementation is obvious. [].

8Thus, the implementation requires no base objects, not even registers.
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op(i)

return(ack)

give-decision(i, b)

if a[decision] E {0, 1} then

return(cr[decision])

else it v o[no]> o) then
return(O)

else return(i)

Figure 13: Implementing Tnkd,initialized to a non-fresh state

The following lemma states that it is impossible to implement a consensus object for

two processes using just Tnkdobjects. Intuitively, Tnkdobjects are so weak that a process

cannot use these objects to leave its "foot marks" behind. Thus, if a process Po runs first,

and then a different process P1 runs, P1 does not realize that P0 ran before it started.

This can cause P1 to decide a value which is not consistent with the decision of Po. The

proof below formalizes this argument. The details of the argument are subtle due to the

non-determinism of the Tkndobjects.

Lemma 5.4 For all k E {2,3,...} U {oo), h,(Tnkd) = 1.

Proof To prove this lemma, we must show that it is impossible to implement a consen-

sus object for two processes using just Tnkd objects. We show this by contradiction. Let

Z(01,02,... ,0,_) be an implementation of consensus from Tnkd for processes P0 and P1,

which is resource optimal: i.e., if 2-' is another implementation of consensus from Takafor

two processes, then 2-' requires at least n base objects. From Lemma 5.3, it follows that

every base object of 2" is initialized to the fresh state.

Consider a derived consensus object O of the implementation 2". Let O1, O2,..., O, be

the base objects of O. In other words, O = 2-(O1, O2,..., 0,). In the following, we present

two scenarios, So and $1, which are indistinguishable to P1, but require P1 to take different
actions.

In Scenario S0, P0 invokes Apply(P0, propose 0, O) and executes it to completion. (Exe-

cution to completion is possible since Z is a wait-free implementation.) Assume that during

the execution of Apply( Po, propose O, 0), every base object behaves like a Tk object. That

is, the history of each base object in the execution of Apply(P0, propose O, O) is linearizable

with respect to Td_. We will refer to this as Assumption A1. By the validity property of

O, Apply(P0, propose O, O) returns 0. Let S be the set of base objects which are in the

fresh state in Scenario S0 at the completion of ltpply(Po,trropose O, 0). Continue Scenario

So, and begin Scenario $1, by letting P1 invoke Apply( Pl, propose 1, O) and run by itself in

either scenario. (See Figure 14 for a depiction of Scenarios S0 and S1.) Assume that each
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Scenario So I Po executes I _ P1 executes I
Apply(Po, propose O, O) Apply(P1, propose 1, O)

P1 executes
Scenario Sl ] [

Apply(P1, propose 1, O)

TIME

Figure 14: Scenarios S0 and S1

base object in S behaves deterministically, consistent with T_, in both scenarios. We will

refer to this as Assumption A2. We prove the following statement inductively: the base

objects in {O1, O2,..., O,,)- 8 can choose among the non-deterministic alternatives (when

applicable) such that for all i > 0, P1 cannot distinguish So from Sl in i steps. The base

case for i = 0 is trivial. To prove the induction step, assume the hypothesis for i <: m.

Consider the (m + 1) st step. Let oper be the operation that P1 performs in this step in

Scenario S0, and let O be the base object on which it performs oper. From the induction

hypothesis and the fact that the implementation is deterministic, it follows that P1 performs

oper on O in its (m + 1) st step in Scenario S1 too.

Suppose oper E {op(0), op(1)}. Then, the response is ack in either scenario. Thus, So

and S1 remain indistinguishable to P1 after m + 1 steps. Hence the induction step.

Suppose that oper is givo-de¢ision(-,-). We make a case analysis to prove the

induction step.

Case 0. 068

O is fresh in both So and S1 just before the invocation of Apply( Pl, propose l, O).

For S0, this follows from the definition of 8, and for S1, from the fact that every base

object is initialized to the fresh state. By Assumption A2, O behaves deterministically

(consistent with Tdk) in both scenarios. The above facts, together with induction

hypothesis, guarantee that (i) O is in the same state in both scenarios at the end of

m steps of P1, and (ii) O returns the same response to over in both scenarios. Thus,

S0 and S1 remain indistinguishable to P1 after m ÷ 1 steps. Hence the induction step.
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Case 1.

Case 2.

Case 0 does not apply and the followingholds:In at leastone of $0 and el,O isupset

in the firstm + 1 stepsof PI.

Let Si be a scenarioin which O is upset in the firstm+l steps of PI. By the

specificationofTnkd,O isfreeto return0 or I to oper in ScenarioSi. Suppose thatO

uses thisfreedom and returnsthe same responseto oper in Si as itdoes in ST. Then

So and SI remain indistinguishableto P1 afterm + 1 steps.Hence the inductionstep.

Neither Case 0 nor Case i applies.In other words, O isnot freshin S0 justbefore

the invocationof Apply(Pl,propose I,{9)and, in both So and Sl, O isnot upset at

the end of m + 1 stepsof PI.

We prove the inductionstepby contradiction.Assume thatitisnot possibleto keep

ScenariosS0 and SI indistinguishableto PI at the end of rn+ 1 steps.We willrefer

to thisas Assumption A3. We arriveat a contradictionaftera seriesof claims.Let

a0k and a_ denote the stateof O at the end of k stepsof PI in ScenariosSo and Sl

respectively.

C1. _r'_[ngd]= 0. In other words, PI does not apply a give-decision operationon

O initsfirstm steps.

Suppose that the claim isfalse.Let k < m be the smallestintegersuch that

_rkl[ngd] = 1. That is, give-decision is executed on 0 for the first time by
P1 in its k th step in Scenario $1. Since 0 is not upset in S1, this implies

that _tl[decision ] E {0,1}, and this value is returned by O in the k th step of

P1 in el. By inductive hypothesis, the same value _[decision] is returned by

O in the k th step of P1 even in S0. Since O is not upset in S0, this implies

that _rko[decision] -- _[decision]. Since decision is irrevocable, it follows that

a_[decision] = _rko[decision] = akl[decision] = cry[decision] E {0, 1}. Since O is

not upset in either scenario, the responses _r_'[decision] and c,_[decision] of O to

oper in Scenarios S0 and Sl, respectively, are identical. Thus, So and Sl remain

indistinguishable to P1 after m + 1 steps. This contradicts Assumption A3.

C2. There is a v G {0,1} such that a_[n,_] > 0 and cr_[n¢] = 0. In other words, P1

executes op(v), but not op(_) in its first m steps in el.

Suppose a_[n0] = cr_[na] = 0. Then, by the specification of Tnkd,when P1 applies

oper = give-decision(-,-) in the (m + 1) a step in el, it upsets O. This
contradicts the case we are considering. Suppose cry[n0] > 0 and a_[nl] > 0.

Since a_[ngd] = 0 (by C1), by the specification of Tnkd,O is free to return either

0 or i in S1. Suppose that 0 uses this freedom and returns the same response to

oper in S1 as it does in So. Then S0 and Sl remain indistinguishable to P1 after

rn-{-1 steps.This contradictsAssumption A3.

C3. PI executesop(v) on O at leastonce in itsfirstm stepsin So.

Followsfrom C2 and the inductionhypothesis.

C4. oper - give-decision(v, false).

Suppose oper = give-decision(_,-) or oper -- give-decision(v, true). Since

_r_n[n_] = 0 (by C2), 0 will be upset in $1 when oper is invoked in the (m + 1) a

step. This contradicts the case we are considering.
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CIO.

ca.   '[aheadM]- false.
Suppose _[aheadM] = true. Then, when P1 executes oper - give-decision(v, false)

(guaranteed by C4) in its (m + 1) st step in So, it upsets 0. This contradicts the

case we are considering.

C6. v = 1 implies ao°[nad] = 0. In other words, if v = 1, then Po never executed a

give-decision operation on 0 in S0.

Suppose v = 1 and Po executed give-decision(I,-) on 0 in So. Since 0

is not upset in So, it follows that Po executed op(1) on 0 before executing

give-decision(i,-). By C3 and the assumption that v = 1, P1 executed o9(1)

in S0. Thus op(1) was executed at least twice on 0 in S0. By the specification

of Tknd,0 would be upset in SO. This contradicts the case we are considering.

Suppose v = 1 and Po executed give-decision(O,-) on 0 in So. Since 0

is not upset in So, it follows that Po executed op(O) on 0 before executing

give-decision(0,-). By C5 and the assumption that v = 1, cry[ahead[Oil =

false. This implies that P0 executed op(1) on 0 before executing give-dec i s ion(0, - ).

By C3 and the assumption that v = 1, Pt executed op(1) in S0. Thus op(1) was

executed at least twice on 0 in S0. By the specification of Tknd,O would be upset

in S0. This contradicts the case we are considering.

C7. v=0.

Supposev = I. Then, wecan infer: (1) = 0 (by C1), (2) = 0
(by C1, induction hypothesis, and C6), (3) al_[nl] > 0 (by C2), (4) cr_[nl] > 0

(by C3). These four facts, together with the specification of Tnkd,imply that O

is free to return 0 to oper in both 50 and St. Suppose that O does this. Then

S0 and $2 remain indistinguishable to P1 after ra + 1 steps. This contradicts

Assumption A3.

cg. O returns 0 to oper (in the (m + 1) st step of P1) in Scenario S1.

C2 and C6 imply that a_[no] > 0 and a_[nl] = 0. Further, by the case we are

considering, O is not upset in the first m + 1 steps of P1 in Scenario 51. The

above facts imply that the only legal value that O can return to oper is 0.

C9. If Po executed give-decision(i,-) on O (in S0), it did so only after executing

op(0) on O.

Suppose P0 executed give-decision(l,-) on 0 (in So). Since O is not upset in

S0, this implies that Po executed op(1) on 0 before executing give-decision(I, -).

If Po did not execute op(0) before executing give-decision(l,-), then the ex-

ecution of give-decision(0,-) would set ahead[l] to true. This, together with

the fact that ahead[l] is stable, implies that a_[ahead[1]] = true. This contra-

dicts the conjunction of C5 and C7.

Every execution of the operation give-decision(-,-) on 0 by Po in Scenario

S0 returns the response 0.

Consider the earliest execution e of give-decision(w, -) on 0 by Po in S0. If

w = 1, C9 implies that Po executes op(0) before e. If w = 0, the fact that 0 is

not upset in S0 implies that P0 executes op(0) before e. Thus, we conclude that
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P0 executes op(0) before e. This, together with Assumption A1, implies that e

returns 0. From this and the fact that 0 is not upset in So, it follows that every

execution of give-decision(-,-) on 0 in So returns the response 0.

Cll. Po never executes give-decision(-,-) on 0 (in So).

Suppose that the claim is false. Then, from C10 and the fact that O is not upset

in So, it follows that O returns 0 to oper in the (m + 1) st step of P1 in Scenario

S0. Thus, by C8, S0 and $1 remain indistinguishable to P1 after m + 1 steps.

This contradicts Assumption A3.

We have: (1) a_"[n0] > 0. This follows from C3 and C7. (2) a_[n0] > 0. This follows

from (1) and induction hypothesis. (3) a_[n_d] = 0. This follows from C1, induction

hypothesis, and Cll. From (2), (3), and the specification of T_d, it is clear that O is

free to return 0 to oper (in the (m + 1) a step of P1) in Scenario So. Suppose that it

does. Then, by C8, S0 and Sl remain indistinguishable to P1 after m + I steps. This

contradicts Assumption A3. Hence the induction step.

This completes the proof of the induction step.

Since 2" is a wait-free implementation, Apply(Pl,propose 1, O) terminates in S0 after a

finite number of steps, returning some value val E {0, 1}. Since $1 is indistinguishable to

P1 from $0, Appl y( Pl, propose 1, O) terminates in Sl after the same number of steps, also

returning val. If val = O, validity of consensus is violated in $1. If val = i, agreement of

consensus is violated in S0. Thus, 2" is not a correct implementation, a contradiction. [3

Theorem 5.1 h,. is neither tight nor robust.

Proof Follows from Proposition 3.6, Corollary 5.1, and Lemma 5.4. O

6 Conclusion

It is well known that shared primitives, depending on their type, vary widely in their ability

to support inter-process synchronization. Recent research focussed on analyzing the power

of individual primitives. In this paper, we ask whether, from our understanding of the power

of the individual primitives, we can infer the power of a set of primitives. For instance, is it

impossible to implement a universal primitive from non-universai primitives? The answer
is not clear. It is conceivable that clever protocols for such implementations exist. Besides

being of theoretical interest, these issues have implications to multi-processor architectures.

To make a systematic study of these issues possible, we define the property of robustness for

wait-free hierarchies. Contrary to popular belief, we show that Herlihy's wait-free hierarchy
is not robust. We also show that some natural variants of Herlihy's hierarchy are also not

robust. This raises the obvious question of whether there is a non-trivial robust wait-free

hierarchy at all. We do not know the answer yet. However, we observe that such a hierarchy,

if it exists, is either h_ or some coarsening of it. Thus, further research on the structure

31



of h_ is essentialto resolvingthis openquestion. As explainedin the paper,the answer
to this question,regardlessof whetherit is affirmativeor negative,hasusefulimplications.
Weclosewith the conjecturethat h_is not robust.
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